The Future of Digital Imaging
In Healthcare

What We Need to Succeed
Abstract:

Today’s digital imaging industry has come very far for hospitals. The basic technology is ready, and hospitals are now acquiring, viewing, and storing more and more of their images digitally. The problem is - all of this is still only happening inside the radiology room.

What’s needed now for digital imaging to realize its full potential - both in cost savings and in improved patient care – is a supporting infrastructure of hardware, software and service options that extends image viewing outside of the radiology room into the rest of the hospital.

In fact, two of the most critical components for the widespread distribution of images are 1) the availability of viewing hardware (especially DICOM-calibrated displays) whose cost and features are tailored to each user environment, and 2) the ability for hospitals to manage this distributed hardware and provide quality assurance from one centralized location.

Digital Photography/Medical Digital Imaging:
A Tale of Two Industries

In the 1990s, when digital camera prices finally dropped out of the stratosphere and came within easy reach of the mass market, people still looked cross-eyed at the new technology. They saw the advantages and the potential, but the practicalities were still missing: How could we share our pictures with all of our friends without mailing them the camera? What can we use to show our digital pictures to everyone? Just getting the JPEGs out of the camera and onto the desktop seemed like way too much work.

Today, those same digital doomsayers are snapping cell phone pix at the beach and sending them to friends back home. They’re sending photos to personalized Web sites, TVs and digital picture frames. They’re using online photo services like Ofoto.com and printing paper versions on their home printers.

What was it that finally tipped the digital photography market over into widespread use?

Not camera price alone. What was absolutely vital was the development of new products that made it easy to view and share digital photos from many different locations.

The problem that the digital photography market faced in the 90’s is exactly where we are in the medical digital imaging industry today:

- Hospitals have deployed digital imaging solutions inside of their radiology rooms, and they have made wide-scale investments to acquire, store and view these images inside of Radiology.
- Now, for digital imaging to really take off, hospitals need to have effective methods of extending the viewing of these images outside of Radiology so that they can be shared by the entire hospital.
- Without the ability to extend the digital images, hospitals will have to maintain a digital imaging infrastructure in the radiology room, alongside a film infrastructure for the rest of the hospital, and this is twice as expensive.

Everyone agrees that digital imaging offers huge upside in terms of cost-effective delivery of services and improved patient care. What’s needed now for it to realize its full potential is what the digital photography industry eventually achieved: effective ways to view the images in a variety of locations. We need the products and services that will make digital images easy to share and view across the entire hospital.
Hospital PACS: Full Digital Distribution = Full Benefits

If you limit your digital imaging to the radiology room, you also limit its potential for cost savings and better patient care. That is, while the cost-effective digital system is in Radiology, hospitals still need their old film-based systems to view the images outside of radiology. So the hospital will have both the cost structure of the digital system and the film system to maintain. That is at least twice as expensive as any one system.

Picture fully distributed digital imaging in this scenario where a patient – Bob – arrives at the ER with severely fractured ribs:

- ER sends Bob to Radiology for chest x-rays. The studies are added to the hospital PACS/RIS database.
- In the radiology room a radiologist calls up the shots and makes a diagnosis from a diagnostic review workstation.
- Back in the ER, physicians and nurses access Bob’s x-rays and the radiologist’s diagnosis on a referral review workstation to assess urgency and treatment options.
- Bob is sent to the OR, where the surgical staff access his studies on a surgical review cart.
- In Post-op and ICU, those same x-rays, plus new ones, are accessed on a clinical workstation at the nursing station as the case is reviewed during shift rotation.
- Bob’s general practitioner is notified and accesses the studies from the PACS on her home computer, which is equipped with a clinical review display. While reviewing it, she notices an unusual density in a non-damaged area of the lung and requests that it be reviewed by a radiologist.
- The radiologist accesses the x-rays again on a diagnostic review workstation and determines whether malignancy may be present.
- Weeks later, the hospital’s physical therapist accesses the x-rays on his clinical workstation to plan Bob’s rehab treatment.

This is just one scenario. Imagine the possibilities when a hospital’s digital imaging systems combine radiology, cardiology, neurology and other specialties.

The Right Display for the Right User

How should a hospital enable image viewing outside of the radiology room? If they tried to simply extend digital imaging using the super-high-quality displays used in radiology reading rooms, the cost would be far too prohibitive. It’s also completely unnecessary. A dual-head 5 mega pixel grayscale monitor would be complete overkill and much too expensive for use in ERs, ORs, doctors’ offices and nursing stations.

To distribute digital imaging throughout the enterprise, hospitals need displays whose performance, specifications and costs are tailored to the needs of each user. They need a suite of displays such as:

- **Diagnostic displays** – Used for radiology and mammography where high resolution and grayscale rendering are absolutely critical, diagnostic displays are DICOM-calibrated 2-, 3- or 5-megapixel (MP) grayscale monitors and are at the high end of the cost spectrum.
- **Referral displays** – Designed for use in ORs, ICUs, ERs and care giving areas, where excellent contrast is important, but not at the level required for radiology. These displays are typically 2- or 3-MP monitors and have DICOM calibration as well.
Clinical displays – Used in physician offices, nursing stations and for patient-bedside education, these 1-MP desktop displays can be used for multiple purposes, but support DICOM calibration for consistency of image viewing.

Specialized displays – Solutions that are designed for specific medical uses, such as mobile viewing station solutions for use in the OR.

What sets all of these displays apart from the consumer-grade flat-panel LCDs available in stores is their DICOM calibration. DICOM calibration ensures that the image displayed on the diagnostic display in the radiology room will look identical to the same image on the clinical display in the doctor’s office. DICOM calibration is the necessary constant for all displays used for medical imaging.

While all of these display systems will maintain the consistency of DICOM calibration and image rendering, they are functionally and economically tailored to meet the needs of the environment in which they are working. So, a hospital can deploy a very high-end $20,000 5-MP system for the radiologist reading mammograms, a $6,000 2-MP system for the oncologist reviewing the images in the OR, and a $1,000 system for the general practitioner going over the patient file from her office.

Having cost-effective solutions for different areas of the hospital unfortunately won’t be enough to cause the spread of digital imaging, as solving one problem has simply created another. That is, while flat-panel displays generally don’t require the constant maintenance that CRTs do, every PACS administrator or IT manager will surely require a rigorous quality assurance (QA) program to ensure DICOM calibration of their display systems.

Whereas display QA in the radiology room is pretty straightforward, and can be easily accomplished by manually walking around to each workstation, fully distributed digital imaging in a large hospital can potentially encompass hundreds of displays in many departments. Performing QA checks on each monitor individually would be highly inefficient and impractical, especially if the hospital has monitors in remote locations.

There’s a better way.

Applying common IT practices, the PACS administrator and/or IT manager needs a simple tool to monitor, manage and control all of their digital imaging workstations from a central location.

From this centralized console or “dashboard,” the PACS administrator could:

- View and adjust display parameters.
- Receive alerts of any problems by e-mail, pager or cell phone when a display is down, out of calibration or if its white levels have dropped out of tolerance.
- Set up alert conditions and responses.
- Access a history of DICOM conformance and other activity for each display.

This display management console also should use a standardized protocol such as SNMP (Simple Network Management Protocol). This is the same protocol used by photocopiers and printers, so the IT department will appreciate the ease of implementation. The management console also will need to have a simple and intuitive graphical interface that PACS administrators can quickly and easily understand for it to give them the confidence they need that their digital imaging displays are running at peak performance.
A Step Toward Widespread Digital Imaging

For digital imaging to truly succeed, hospitals are demanding access to images everywhere, and cost-effective viewing solutions are required to support this. PACS administrators need a solution to manage their viewing stations in a distributed environment without having to constantly walk around the hospital and doctors' offices day after day.

Planar Systems® is the company that is enabling the true potential of digital imaging. We create a complete line of Dome® displays for diagnostic, referral, clinical and surgical environments. We don’t take a one-size-fits-all approach. Our solutions are functionally and economically tailored to meet the needs of the environments where they are used. We also ensure that our displays are DICOM-calibrated with Dome CXtra calibration software, which functions with all of our Dome display hardware. The PACS administrator and IT manager also can monitor and manage the displays centrally with the Dome Dashboard™ console application.

With our wide array of Dome displays and Dome calibration and management software, Planar has taken a big step towards creating the necessary infrastructure that will help make distributed digital imaging a widespread reality.

We truly are one step closer to making digital medical imaging as widespread in the medical industry as digital photography is among consumers today.

For more information on Planar and our display solutions for digital imaging, please visit us at www.planar.com.